Electronics I

Bipolar Junction Transistors BJT

By: Dr Samich Abu Saad

LICTURE CONTENTS

- \triangleright INTRODUCTION
- > BASIC CONSTRUCTION OF BJT
- \triangleright OPERATION PRINCIPLES
- \triangleright DC OPERATING POINT
- \triangleright DC LOAD LINE
- > TRANSISTOR CONFIGURATION
- > TRANSISTOR BIASING (DC)

INTRODUCTION 1- Introduction, 1

- The first transistor was adverted On December 23, 1947, by Dr. S. William Shockley, Walter H. Brattain, and John Bardeen.
- \triangleright They demonstrated the amplifying action of the first transistor at the Bell Telephone Laboratories.
- \triangleright BJT is an electronic component mainly used for switching and amplification purpose.

>BASIC CONSTRUCTION OF BJT,

- ➢ A BJT is a three-terminal semiconductor device.
- ➢ BJT are called bipolar because they are consist of two p-n junctions.
- \triangleright BJT has three doped regions; the bottom region is the emitter, the middle region is the base, and the top region is the collector.
- The base region is much thinner as compared to the other two regions.

>BASIC CONSTRUCTION OF BJT,

➢ **Doping Levels**

- \checkmark The emitter is heavily doped. On the other hand, the base is lightly doped. The doping level of the collector is intermediate.
- \checkmark The collector is physically the largest of the three regions.
- The result of combination is two depletion layers, the barrier potential is 0.7 V at 25° C for a Si transistor (0.3 V at 25° C for a Ge transistor).

>BASIC CONSTRUCTION OF BJT, 3

- An unbiased npn transistor is like two back-to-back diodes. Each diode has a barrier potential of approximately 0.7 V.
- \checkmark When external voltage sources are connected to the transistor, currents pass through the different parts of the transistor .
- \checkmark The transistor is usually biased by connecting sources to its terminals

➢ Both pnp and npn transistors have the same basic operation.

Alban S

- \triangleright The operation is exactly the same if the roles played by the electron and hole are interchanged.
- ➢ If the base-emitter bias circuit only connected, the depletion region is reduced in width due to the applied bias, resulting in a heavy flow of majority carriers from pto n-type material.
- ➢ Now remove the base-emitter bias and back the base-collector bias. The np junction is reverse biased.
- ➢ Therefore: One pn junction of a transistor is reverse-biased, whereas the other is forward biased.

- ➢ When both biasing voltages are applied to a pnp transistor, a large number of majority carriers will diffuse across the forward biased p–n junction into the n-type material.
- ➢ A very small number of majority carriers (microamperes) will take path to the base terminal.
- ➢ The larger number of these majority carriers will diffuse across the reverse-biased junction into the p-type material connected to the collector terminal.

- \triangleright The N-type material is provided negative supply and P-type material is given positive supply to make the circuit Forward bias.
- \triangleright The N-type material is provided positive supply and P-type material is given negative supply to make the circuit Reverse bias.
- \triangleright By applying the power, the emitter base junction is always forward biased as the emitter resistance is very small.
- \triangleright The collector base junction is reverse biased and its resistance is a bit higher.
- \triangleright A small forward bias is sufficient at the emitter junction whereas a high reverse bias has to be applied at the collector junction.
- ➢ Conventional Current, is the movement of hole current which is opposite to the electron current.

AN II mar I

N-P-N Transistor biasing

P-N-P Transistor biasing

- \triangleright In short, all the minority carriers in the depletion region will cross the reversebiased junction.
- \triangleright Applying KCL to the transistor as if it were a single node, we obtain :

$$
I_E = I_C + I_B
$$

- ➢ That's way the arrow in the graphic symbol of the BJT defines the direction of emitter current (conventional flow) through the device.
- \triangleright Also, there are three terminal voltages, i.e. V_E , V_C and V_B
- \triangleright The voltage between each two terminals is indicated to by the letters of the terminals, V_{BE} , V_{CE} and V_{CB}
- \triangleright The base current is much smaller than the collector current: I_B<< I_C
- \triangleright Hence, $I_C \approx I_E$

Circuit Symbols

 C).

r Sannich Abu Saad

THE BJT as A SWITCH

umnick Albul Si

- ➢ A BJT transistor can be used as an electronic switch as to control devices such as lamps, motors and solenoids etc.
- ➢ When a voltage is applied on the base, current passes throughout the transistor via the collector and the emitter into the load.

THE BJT as an AMPLIFIER

➢ DC Alpha

 \checkmark The dc alpha (α_{dc}) is defined as the dc collector current divided by the dc emitter current:

$$
\alpha_{dc}=\frac{I_{c}}{I_{E}}
$$

- \checkmark Since the collector current almost equals the emitter current, the α_{dc} is slightly less than 1. In a low-power transistor the $\alpha_{\rm dc}$ is typically greater than 0.99.
- ➢ DC Beta
- \checkmark The dc beta (β_{dc}), also known as the current gain of a transistor, is defined as the ratio of the dc collector current to the dc base current:

$$
\beta_{\rm dc} = \frac{I_{\rm c}}{I_{\rm B}}
$$

 \checkmark The β_{dc} is the most important property of a transistor, and normally is given by the manufacturer. For under 1 W transistors, β_{dc} is typically 100 to 300; while it is about 20 to 100 for High-power transistors.

► DC OPERATING PONT, 1

- ➢ **BJT Characteristic Curves**
- ✓ **The characteristics curves are described for every BJT transistor.**
- ✓ **The relation between the current and voltage is graphically represented.**
- ✓ **The BJT has three terminals, so many curves can be obtained based on the voltage supply variations at any terminal.**
- ✓ **To describe the behavior of a three-terminal device, two sets of characteristics are represented, i.e one for the driving point (input) and the other for the output.**
- ✓ **However, such curves will highly depending on the way the three terminals are connected (BJT configuration).**

DC OPERATING PONT, 2

➢ **BJT Curve Explanation**

AN *Iliman*

- \checkmark The characteristics curves are graphically described by two sets of characteristics.
- \checkmark Firstly, by relating the input parameters for various output parameters.
- \checkmark For example, for the circuit shown in the figure, the driving voltage V_{BE} and I_E are drown for various levels of output voltages V_{CR}
- \checkmark In this case, it looks like the curve of an ordinary diode as shown in following Figure.
- \checkmark It is a forward-biased emitter diode, so it is as the usual diode curve.

» DC OPERATING PONT, 3

➢ **BJT Curve Explanation**

- \checkmark The characteristics curves are graphically described by two sets of characteristics.
- \checkmark Second, is the output set that relates the output parameters for various input variables. $\frac{1}{2}$ (mA)
- \checkmark For example, the current I_C to an output voltage V_{CB} for various levels of input current I_F as shown in the figure.
- \checkmark The output or collector set of characteristics has three basic regions.

- ➢ **The BJT transistors have three basic regions of operation.**
- ➢ **The BJT gets into each region of operation based on the DC supply.**
- ➢ **The polarity of the supply would make junctions forward or reverse biased.**
- ➢ **Therefore, a supply of a dc voltage is called as biasing. Either forward or reverse biasing is done to the emitter and collector junctions of the transistor.**
- ➢ **The biasing methods make the transistor circuit to work in three different regions:** *Cutoff***,** *Saturation***, and** *Active* **regions.**
- ➢ **All these regions are graphically represented.**

➢**The** *Cutoff Region*

- \checkmark The cutoff region is defined as that region where the collector current is 0 A.
- \checkmark In the cutoff region the base–emitter and collector–base junctions of a transistor are both reverse-biased.
- \checkmark In this is the region the transistor behaves as an open switch.
- \checkmark However there is a very small collector current called the collector cutoff current.
- \checkmark This is because the collector diode has reverse minority-carrier current and surface-leakage current.

 $V_{CE} = V_{CC}$, $V_{BE} < 0.7V$ and $I_B = I_C = I_E = 0$

➢**The** *Saturation Re***gion**

- \checkmark In the saturation region, the collector diode has insufficient positive voltage to collect all the free electrons injected into the base.
- \checkmark In the saturation region the base–emitter and collector– base junctions are forward-biased.
- \checkmark In this is region, the transistor behaves as a closed Transistor As Switch switch.
- \checkmark The transistor has the effect of its collector and emitter being shorted.

 \checkmark The collector and emitter currents are maximum.

In this region: $I_C = I_E$ and V_{CE} is very small.

AVIDA Sa

➢**The** *Active Re***gion**

omana dha Alban Sal

- \checkmark In the active region, the base–emitter junction is forward-biased, whereas the collector– base junction is reverse-biased.
- \checkmark A transistor while in this region, acts as an Amplifier.
- This region represents the normal operation of a transistor.
- \checkmark The collector is gathering almost all the electrons that the emitter has sent into the base.
- \checkmark Also, changes in collector voltage have no effect on the collector current.
- \checkmark So the collector current is constant in this region.

 $I_C = \beta I_B$ and $V_{BF} = 0.7V$ (as a Si diode)

Vcc $I_c = \beta I_B$

 $\bm{\mathsf{V}}_{\texttt{IN}}$ c

In Active region

➢**Summary of The Three Regions**

➢ **The Regions of the BJT operation is represented by sketching the device characteristics curve.** R_C

- ➢ The BJT configuration refers to the way the three BJT terminals are connected.
- ➢ There are three ways to configure (connect) a transistor:
	- Common Emitter (CE),
	- Common Collector (CC),
	- \checkmark Common Base (CB).

r Sannich Abu Saad

- ➢ The term common refers to the fact that ground (common) side of each voltage source is connected to one terminal (both sources share one side ground at one terminal).
- \triangleright In other words, one terminal of the BJT is common to both the input and output sides of the configuration.

➢**Common Emitter (CE), Circuit Description .**

- \checkmark In this configuration the emitter is common to both the input and output terminals. This configuration is most widely used configuration.
- \checkmark As shown in the figure, this configuration comprises of two loops; the base
- loop, and the collector loop.
- \checkmark In the base loop, the V_{BB} forward biases the emitter diode with R_B limiting the current.
- The base current controls the collector current. It means that a small base current controls a large collector current.

\triangleright Common Emitter (CE), Circuit Equations.

The current and voltage relations can be developed for this circuit as follows: \checkmark

➢**Common Emitter (CE), Characteristic Curves.**

➢**Input Circuit Characteristics**

- \checkmark The input circuit is the base emitter side. Its characteristics are a plot of the input current I_B versus the input voltage V_{BE} .
- \checkmark This is done for a range of values of output voltage V_{CF}
- \checkmark As indicated earlier, The curve of the input circuit represents an ordinary diode as illustrated in the Figure.

➢**Common Emitter (CE), Characteristic Curves.**

➢**Output Circuit Characteristics**

- \checkmark The output circuit characteristic is the plot of the output current I_C versus output voltage V_{CE} for a range of values of input current I*B* .
- \checkmark Varying V_{BB} and V_{CC} to produce different transistor voltages and currents. By measuring I_C and V_{CE} , the *(Saturation region)* graph is plotted.
- \checkmark In CE configuration, the active region (V_{CE} is between 1 and 40 V) represents the normal operation of a transistor; the emitter diode is forward biased, and the collector diode is reverse biased.
- \checkmark Changes in collector voltage have no effect on the collector current.

➢**Common Base (CB), Circuit Description .**

 \checkmark In this configuration the Base is common to both the input and output sides. \checkmark When the transistor in the "on" or active state the voltage from base to emitter will be 0.7 V at any level of emitter current.

➢**Common Base (CB), Characteristic Curves.**

➢**Input Circuit Characteristics**

- \checkmark The input circuit is the base emitter side. Its characteristics are a plot of the input current I_E versus the input voltage V_{BE} .
- \checkmark This is done for a range of values of output voltage V_{CR}
- \checkmark The variation of the collector base voltage, V_{CR} has a little effect on the characteristic input curve.

 \uparrow I_E (mA) $V_{CB} = 20 V$ 8 $V_{CB} = 10 \text{ V}$ 6 5 4 3 2 θ 0.2 0.4 0.6 0.8 1.0 V_{RF} (V)

➢**Common Base (CB), Characteristic Curves.**

➢**Output Circuit Characteristics**

- \checkmark The output circuit characteristic is the plot of the output current I_C versus output voltage V_{CR} for a range of values of input current I_{E_1} , $\frac{1}{2}$
- \checkmark In the active region the base–emitter junction. is forward-biased, whereas the collector–base junction is reverse-biased.
- \checkmark In the cutoff region the base–emitter and collector–base junctions of a transistor are both reverse-biased.
- \checkmark In the saturation region the base–emitter and collector–base junctions are forward-biased.

➢**Common Base(CB), Circuit Equations.**

 \checkmark The current and voltage relations can be developed for this circuit as follows:

➢**Common Collector (CC), Circuit Description .**

- \checkmark In this configuration the Collector is common to both the input and output sides.
- \checkmark The CC configuration is used primarily for impedance-matching purposes since it has a high input impedance and low output impedance, opposite to that of other two configurations.
- \checkmark Its input characteristics is the same as for the CE characteristics.
- Also, its output characteristics are the same as for the CE configuration.

➢**Example 1**

A transistor has a collector current of 10 mA and a base current of 40 A. What is the current gain of the transistor?`

The transistor current gain is
$$
\beta_{dc} = \frac{I_c}{I_B} = \frac{10mA}{40\,000mA} = 250
$$

➢**Example 2**

A transistor has a current gain of 175 and base current 0.1 mA, what is I_C ?

The collector current is $I_c = I_B \beta_{dc} = 175 * 0.1 mA = 17.5 mA$

➢**Example 3**

A transistor has a collector current of 2 mA and current gain 135, what is I_B ?

The base current is
$$
I_B = \frac{I_C}{\beta_{dc}} = \frac{2mA}{135} = 14.8 \mu A
$$

EXAMPLES, 2

➢**Example 4**

Calculate the I_B for the circuit. What is the V_{RB} and I_C if $\beta_{dc} = 200$?

Applying KVL for the base emmiter loop:

 $V_{RB} = V_{BB} - V_{BE} = 2V - 0.7V = 1.3V$

$$
\therefore I_{B} = \frac{V_{RB}}{R_{B}} = \frac{1.3V}{100K\Omega} = 13 \mu A
$$

$$
\therefore I_C = I_B \beta_{dc} = 200 * 13 \mu A = 2.6 mA
$$

➢**Example 4**

The transistor in the figure has $\beta_{dc} = 300$. Calculate *I_B*, *Ic*, *VcE*, and *P_D*?

$$
I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{10V - 0.7V}{1M\Omega} = 9.3 \mu A
$$

\n
$$
I_{C} = I_{B} \beta_{dc} = 300 * 9.3 \mu A = 2.79 mA
$$

\n
$$
V_{CE} = V_{CC} - V_{RC} = 10V - 2K\Omega * 2.79mA = 4.42 V^{10V} = 7.33 mV
$$

\n
$$
V_{CE} = V_{CC} - V_{RC} = 10V - 2K\Omega * 2.79mA = 4.42 V^{10V} = 7.33 mV
$$

EXAMPLES, 3

➢**Example 5**

Calculate the V_{CE} for the following circuit?

$$
I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{15V - 0.7V}{470K\Omega} = 30.4 \mu A
$$

$$
\therefore I_C = I_B \beta_{dc} = 100 * 30.4 \mu A = 3.04 mA
$$

$$
V_{\text{CE}} = V_{\text{CC}} - V_{\text{RC}} = 15V - 3.6K\Omega * 3.04mA = 4.06
$$

➢**Example 6**

For the previous circuit if *VBE* is 1V, what is the *VCE*?

$$
I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{15V - 1V}{470K\Omega} = 29.78\mu A
$$

\n
$$
I_{C} = I_{B} \beta_{dc} = 100 * 29.78\mu A = 2.98mA
$$

\n
$$
V_{CE} = V_{CC} - V_{RC} = 15V - 3.6K\Omega * 2.98mA = 4.27V
$$

Sannich Abu Sa

EXAMPLES, 4

➢**Example 7**

Calculate the V_{CE} for the following circuit?

$$
I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}} = \frac{15V - 0.7V}{470K\Omega} = 30.4 \mu A
$$

$$
\therefore I_C = I_B \beta_{dc} = 100 * 30.4 \mu A = 3.04 mA
$$

$$
V_{\text{CE}} = V_{\text{CC}} - V_{\text{RC}} = 15V - 3.6K\Omega * 3.04mA = 4.06
$$

➢**Example 8**

For the following circuit determine I_E , V_E , I_C , V_C , I_B where β = 150 ?

Bothe base and emitter nodes are grounded, therefore the emitter-base junction is not conducting, so: $V_E = 0V$, $V_B = 0V$, $V_{BE} = 0V$, $I_B = 0mA$ and $I_E = 0mA$. applying KCL we find $I_C = I_E - I_B = o$ mA use KVL to find V_{CE} : $V_{CE} = V_{CC} - I_{E} * R_{E} = 10V - 0 * 3K \Omega = 10V$ The transistor is working in the cutoff region (an open switch). Sammaela Alban Samad

10 V

